Regulation of protein synthesis by IGF-I in proximal tubular epithelial cells.

نویسندگان

  • Duraisamy Senthil
  • Goutam Ghosh Choudhury
  • Hanna E Abboud
  • Nahum Sonenberg
  • Balakuntalam S Kasinath
چکیده

Protein synthesis is required for renal hypertrophy, and proximal tubular epithelial cells are an important cell type involved in this process. We examined IGF-I regulation of protein synthesis in murine proximal tubular epithelial (MCT) cells. We focused on initial events in protein translation and the signaling events involved. Translation of capped mRNAs is under the control of eukaryotic initiation factor 4E (eIF4E). In the resting cell, eIF4E is normally kept in an inactive state by binding to 4E-BP1, its binding protein. Phosphorylation of 4E-BP1 results in dissociation of the eIF4E-4E-BP1 complex allowing eIF4E to initiate peptide synthesis. IGF-I stimulated protein synthesis, augmented phosphorylation of 4E-BP1 and promoted the dissociation of eIF4E from 4E-BP1. IGF-I stimulated the activities of phosphatidylinositol (PI) 3-kinase, Akt, and ERK1/2-type MAPK in MCT cells. IGF-I-induced phosphorylation of 4E-BP1, dissociation of the 4E-BP1-eIF4E complex, and increase in protein synthesis required activation of both PI 3-kinase and ERK pathways. Furthermore, ERK activation by IGF-I was also PI 3-kinase dependent. Transfection with the Thr37,46-->Ala37,46 mutant of 4E-BP1 showed that phosphorylation of Thr37,46 residues was required for IGF-I induction of protein synthesis in MCT cells. Our observations reveal the importance of initial events in protein translation in IGF-I-induced protein synthesis in MCT cells and identify the regulatory signaling pathways involved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioactivity of glomerular ultrafiltrate during heavy proteinuria may contribute to renal tubulo-interstitial lesions: evidence for a role for insulin-like growth factor I.

Clinical and experimental data have indicated that heavy proteinuria in renal glomerular diseases is associated with the formation of tubulo-interstitial fibrosis and contributes to the progression of renal failure. Albumin in glomerular ultrafiltrate does not appear to cause this sequelae, rather than compounds that are associated with ultrafiltered plasma proteins. One such protein-bound fact...

متن کامل

Transforming growth factor-β-induced alpha-smooth muscle cell actin expression in renal proximal tubular cells is regulated by p38β mitogen-activated protein kinase, extracellular signal-regulated protein kinase1,2 and the Smad signalling during epithelial–myofibroblast transdifferentiation

Background. Transforming growth factor-β (TGFβ)induced epithelial–myofibroblast transdifferentiation is a central mechanism contributing to the pathogenesis of progressive tubulo-interstitial fibrosis. We wanted to dissect the role of extracellular signal-regulated protein kinase (ERK1,2), p38 mitogen-activated protein kinase (p38 MAPK) and the receptor-regulated Smad proteins in the regulation...

متن کامل

Hyperuricemia Induces Wnt5a/Ror2 Gene Expression, Epithelial–Mesenchymal Transition, and Kidney Tubular Injury in Mice

Background: Hyperuricemia contributes to kidney injury, characterized by tubular injury with epithelial–mesenchymal transition (EMT). Wnt5a/Ror2 signaling drives EMT in many kidney pathologies. This study sought to evaluate the involvement of Wnt5a/Ror2 in hyperuricemia-induced EMT in kidney tubular injury.Methods: A hyperuricemia model was performed in male Swiss background mice (3 months old,...

متن کامل

IGF-1 protects tubular epithelial cells during injury via activation of ERK/MAPK signaling pathway

Injury of renal tubular epithelial cells can induce acute renal failure and obstructive nephropathy. Previous studies have shown that administration of insulin-like growth factor-1 (IGF-1) ameliorates the renal injury in a mouse unilateral ureteral obstruction (UUO) model, whereas the underlying mechanisms are not completely understood. Here, we addressed this question. We found that the admini...

متن کامل

Distinct Mesenchymal Alterations in N-Cadherin and E-Cadherin Positive Primary Renal Epithelial Cells

BACKGROUND Renal tubular epithelial cells of proximal and distal origin differ markedly in their physiological functions. Therefore, we hypothesized that they also differ in their capacity to undergo epithelial to mesenchymal alterations. RESULTS We used cultures of freshly isolated primary human tubular cells. To distinguish cells of different tubular origin we took advantage of the fact tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 283 6  شماره 

صفحات  -

تاریخ انتشار 2002